

OUTLINE

- Problem Statement
- Statement of goals and objectives
- Description of technology
 - Architecture
 - Approach to coordinated observing
- DESOPS System description
 - Using DESOPS
 - System status
- Future goals and challenges

Linking Observations and Models

- NASA's Earth science planning emphasizes
 maintaining a close linkage between observations
 and models so that the benefits of both sets of
 activities are maximized.
 - Space-based
 - Sub-orbital
- It is important to recognize the linkage between different types of observations, especially in the context of
 - validation of space-based observations
 - coordinated deployment of satellite, airborne, balloon, and/or ground-based measurements in process-oriented field campaigns.

Vision: Model-based Observing

- Harnessing a large number of heterogeneous, distributed sensing resources.
- Enable users to seamlessly access these resources for scientific goals.
- These goals can be viewed as complex workflows, consisting of a series of data acquisitions and transformations.
- Workflow generation can be viewed as a planning problem.
 - Data products as planning goals.
 - Plan as sequences of operations to accomplish the goals.
- Akin to "grid computing" idea.

Goal and Objective of Research

- Goal: Establish a tighter link between users of remote sensing resources and the resources themselves.
 - More efficient use of resources
 - Better science return
- Objective: Develop an software infrastructure for coordinated observations.
 - Provides a single information portal into daily mission observation scheduling operations.
 - Integrated tool for constructing and executing a set of requests to Earth observing missions.

Coordinated Observation Scheduling Architecture

DESOPS System Components

- Plan database
 - Stores campaign constraints, plan, state.
- Planner
 - Manages temporal plan construction interactively with user.
- Constellation model
 - Defines the observation resources available to build campaigns.
 - Models satellite orbit dynamics
- Request manager
 - Formats and submits requests to missions
 - Monitors state of campaign
 - Initiates replanning activities
- User interface
 - Displays campaign information
 - Allows interactive input

Earth Science Campaign as Planning Problem

A coordinated effort to collect a series of satellite measurements towards a science goal

Each measurement consists of

- A sensor capability
- A location on the Earth
- A desired time window
- Other constraints

Exogenous events (fires, hurricanes, etc.)

Example campaign

Goal: Validate an emissions model predicting the aerosols released by wildfires.

Measurements required or desired:

- Vegetation type/biomass (required)
- Fuel moisture content (desired)
- Fire temperature (required)
- Aerosol concentration (required)
- Burned area (required)

Location: San Diego County

Requested Times:

- Vegetation type/biomass --> priori to fire (summer)
- Fuel moisture content --> just prior to fire
- Fire temperature --> coincident to fire
- Aerosol concentration --> coincident to fire
- Burned area --> after fire

Available Sensors

ETM+ or TM (Landsat) -- vegetation type, June or July

Hyperion (EO-1) -- moisture content, just preceeding the fire

MODIS (Aqua) -- aerosol concentration, coincident to fire, pm

MODIS (Terra) -- aerosol concentration, coincident to fire, am

MOPITT (Terra) -- aerosol concentration, coincident to fire, am

ASTER (Terra) or TM (Landsat) -- fine spatial resolution burned area, post-fire

MODIS (Terra) -- coarse spatial resolution burned area, post-fire, am

MODIS (Aqua) -- coarse spatial resolution burned area, post-fire, pm

Data prices

Sensor	Pre-acquisition cost	Archived data cost
Landsat ETM+	\$800	\$800
Landsat TM	\$625	\$625
ASTER	\$55	\$55
Hyperion	\$1500 (42 km) \$2500 (185 km)	\$250
MODIS	\$0	\$0
MOPPIT	\$0	\$0

Reasoning under uncertainty

Observations typically surround a natural event (fires, volcanos, tsunamis)

Missions control resource, are "uncooperative"

Multi-criteria optimization

Users express preferences for sensors, time of observation, cost

Result: approach that combines flexible planning with continuous re-scheduling

1. Define a set of Measurements and Associated Constraints

2. Build Flexible Temporal Plan For Campaign

3. Generate Observation Opportunities for Each Measurement Consistent with Constraints

4. Dispatch Flexible Plan, Monitor, Replan

DESOPS User Interface

Summary of Technical Accomplishments

- Developed Architectural Components and Communication Protocol for directly linking Science Pis more with observing resources
 - Enabling coordination with minimal disruption to current mission practices
 - Based loosely on "computational grid" paradigm
- Generalization of approaches to temporal planning and execution
 - Temporal planning with preferences
 - Representing temporal uncertainty
- Implemented prototype of architecture
 - Testing end-to-end capabilities in simulation

Future Challenges

- Integration of Earth Science Models into Observation Scheduling
 - Models assist users in formulating optimal campaigns for observation
- "Closing the loop" between observation scheduling and data analysis
 - Results of analysis trigger new observation goals
- Expand scope of planning
 - Goal of planning is acquisition of data products
- Expand to missions that coordinate satellite-based with sub-orbital observations.

One part of the IT role in the Earth Science Vision

Measurement	Sensor	Time	Req Status
M1	S1	40	Init
M1	S1	57	Init
M2	S1	60	Init
M3	S2	50	Init
M3	S3	100	Init
M3	S3	120	Init

Observation Request Table

Measurement	Sensor	Time	Req Status
M1	S1	40	<u>Submitted</u>
M1	S1	57	<u>Open</u>
M2	S1	60	<u>Submitted</u>
M3	S2	50	Init
M3	S3	100	Init
M3	S3	120	Init

Observation Request Table

Measurement	Sensor	Time	Req Status
M1	S1	40	<u>Submitted</u>
M1	S1	57	<u>Open</u>
M2	S1	60	<u>Submitted</u>
M3	S2	50	Init
M3	S3	100	Closed (user)
M3	S3	120	Init

Observation Request Table

Measurement	Sensor	Time	Req Status
M1	S1	40	<u>Accepted</u>
M1	S1	57	<u>Open</u>
M2	S1	60	<u>Accepted</u>
M3	S2	50	Init
M3	S3	100	Closed (user)
M3	S3	120	Init

Observation Request Table

Measurement	Sensor	Time	Req Status
M1	S1	40	<u>Accepted</u>
M1	S1	57	<u>Open</u>
M2	S1	60	<u>Accepted</u>
M3	S2	50	Timed Out
M3	S3	100	Closed (user)
M3	S3	120	Out of range

Observation Request Table

Measurement	Sensor	Time	Req Status
M1	S1	40	<u>Accepted</u>
M1	S1	57	<u>Open</u>
M2	S1	60	<u>Accepted</u>
M3	S2	50	<u>Timed Out</u>
M3	S3	100	<u>open(user)</u>
M3	S3	120	Out of range

Observation Request Table

Measurement	Sensor	Time	Req Status
M1	S1	40	<u>Accepted</u>
M1	S1	57	<u>Open</u>
M2	S1	60	<u>Accepted</u>
M3	S2	50	Timed Out
M3	S3	100	<u>Submitted</u>
M3	S3	120	Out of range

Observation Request Table

Measurement	Sensor	Time	Req Status
M1	S1	40	<u>Accepted</u>
M1	S1	57	<u>Open</u>
M2	S1	60	<u>Accepted</u>
M3	S2	50	Timed Out
M3	S3	100	<u>Accepted</u>
M3	S3	120	Out of range

Observation Request Table